Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Define operation research. Explain the phases of operation research.

(08 Marks)

- b. Define the following with reference to LPP
 - i) Feasible solution
 - ii) Slack variables
 - iii) Degeneracy
 - iv) Optimal solution

(08 Marks)

OR

2 a. A firm manufactures 3 types of products A, B, C. These products are processed on 3 different machines. The time required to manufacture each of 3 products and the daily capacity of the 3 machines are given in the table.

/ \			2000 27		
Machine	Product A	Product B	Product C A	vailability of machines	
1	2	3	2	440	
2	4 🔨	_	3	470	
3	2	5	74	430	

It is required to determine the daily number of units to be manufactured for each products. The profit per unit of a product A, B, C is Rs. 4, 3, 6 respectively. It is assumed that all the amount produced are consumed in a market. Formulate the mathematical model for a given LP.

(08 Marks)

b. Solve graphically for given LP

Max $Z = 100x_1 + 40x_2$

Subject to the constraints $5x_1 + 2x_2 \le 1000$

$$3x_1 + 2x_2 \le 900$$

$$x_1 + 2x_2 \le 500$$

where
$$x_1, x_2 \ge 0$$
.

(08 Marks)

Module-2

3 a. Find all the basic solutions to the following problem.

Max $Z = x_1 + 3x_2 + 3x_3$

Subject to the constraints $x_1 + 2x_2 + 3x_3 = 4$

$$2x_1 + 3x_2 + 5x_3 = 7$$

Also find which of the basic solution are

- i) Basic feasible
- ii) Non degenerative basic feasible
- iii) Optimal basic feasible.

(06 Marks)

b. Solve the following LP by simplex method:

Max
$$Z = 3x_1 + 4x_2$$

Subject to the constraints $x_1 + x_2 \le 450$

$$2x_1 + x_2 \le 600$$

Where $x_1, x_2 \ge 0$.

(10 Marks)

OR

Solve the following LP by Big M – method :

Min $Z = 12x_1 + 20x_2$ Subject to the constraints $6x_1 + 8x_2 \ge 100$

 $7x_1 + 12x_2 \ge 120$

(08 Marks)

Where $x_1, x_2 \ge 0$. b. Use 2-phse Simplex method to

 $Max Z = 5x_1 - 4x_2 + 3x_3$

Subject to the constraints $2x_1 + x_2 - 6x_3 = 20$

 $6x_1 + 5x_2 + 10x_3 \le 76$

 $8x_1 - 3x_2 + 6x_3 \le 50$

Where $x_1, x_2, x_3 \ge 0$.

(08 Marks)

(08 Marks)

Module-3

- Explain the essence of duality theory.
 - Write the dual of the following LPP

Minimize $Z = 3x_1 - 6x_2 + 4x_3$

Subject to the constraints $4x_1 + 3x_2 + 6x_3 \ge 9$

$$1x_1 + 2x_2 + 3x_3 \ge 6$$
$$6x_1 - 2x_2 - 2x_3 \le 10$$

$$x_1 - 2x_2 + 6x_3 \ge 4$$

$$2x_1 + 5x_2 - 3x_3 \ge 6$$

where $x_1, x_2, x_3 \ge 0$.

(08 Marks)

(06 Marks)

OR

- Write the working procedure of dual simplex method.
 - Use the dual Simplex method to solve the following LPP

Minimize $Z = 2x_1 + 2x_2 + 4x_3$

Subject to the constraints $2x_1 + 3x_2 + 5x_3 \ge 2$

$$3x_1 + x_2 + 7x_3 \le 3$$

 $x_1 + 4x_2 + 6x_3 \le 5$
where $x_1, x_2, x_3 \ge 0$.

$$x_1 + 4x_2 + 6x_3 \le 5$$

(10 Marks)

Module-4

- a. Find the initial basic feasible solution of the following transportation problem by
 - i) Least cost method
 - i) North West comer rule method.

	∧A [⋄]	В	C	D	Supply
	19	30	50	10	7
	70	30	40	60	9
	40	8	70	20	18
Demand	5	8	7	14	

(10 Marks)

b. Find the optimal transportation cost by Vogeis method.

	A	В	\mathbf{C}	Supply
,	2	7	4	5
	3	3	1	8
	5	4	7	7
	1 .	6	2	14
Demand	7	9	18	

(06 Marks)

15CS653

OR

8 a. Write the procedure of Hungarian method.

(08 Marks)

b. Consider the problem of assigning 5 jobs—to 5 persons. The assignment costs are given as follows:

			.,	4. 100	
	\mathbf{P}_1	P ₂	P ₃	P_4	P ₅
J_1	8	4	2	6	1
J_2	0	9	5	5	4
J_3	3	8	9	2	6
J ₄ &	4	3	1	0	3
J_5	9	5	8	9	5

Determine the optimum assignment schedule for minimum cost.

(08 Marks)

Module-5

- 9 a. Define the following:
 - i) Pay off
 - ii) Saddle point
 - iii) Maximin IV Minimax Principles.

(04 Marks)

b. Use the principle of dominance to reduce the following game:

	B			
~ ~ ~	I	\mathbf{II}	III	IV_
Ī	3	2	4	0
Y) II	3	4	2	4
A III	4	2	4	0
IV	0	4	0	8

(06 Marks)

c. Solve the following game graphically and find out saddle point and value of game.

	1	\mathbf{B}	C.
	B_1	B_2	B_3
$\mathbf{A} = \mathbf{A}_1$	1	3	×11°
$^{\mathrm{A}}$ A_{2}	8	5	2
			7

(06 Marks)

OF

10 a. Explain in detail minimum spanning tree with constraints.

(08 Marks)

b. Explain genetic algorithm and simulated annealing algorithm.

(08 Marks)